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1 Introduction

The MHV rules of Cachazo, Svrček and Witten [1] are equivalent to a new set of Feynman

rules for QCD tree-level scattering amplitudes that are particularly efficient. Initially

conjectured on the basis of an analogy with strings moving on twistor space [2] they were

proven by recursion relations [3]. They emerge from gauge fixing a twistor space action

for Yang-Mills [4]–[10] and can also be derived using a canonical transformation applied

to the light-cone gauge Yang-Mills Lagrangian [11, 12]. To generalise these rules to loop

level requires the introduction of a regulator, for example some variant of dimensional

regularisation. Although much of the mathematical structure underlying this approach to

Yang-Mills theory, such as conformal invariance and twistor space, is broken by the passage

to arbitrary dimension there is some cause for optimism that progress towards formulating
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MHV rules for loop processes can still be made [13]. One of the features that emerges at loop

order is that the new fields do not generate the same S-matrix as the original ones because

of the non-locality of the canonical transformation. This effect accounts for the one-loop

amplitudes for gluons of purely positive helicity which would otherwise appear to be absent

from the theory. However, it is potentially damaging for the efficiency of the MHV rules

because it would seem to require an extra ingredient in the calculation of amplitudes to

describe the translation between the two sets of fields. It is the purpose of this paper to show

that although extra structure is required to translate between the two sets of fields, these

‘translation kernels’ are required only for all plus amplitudes at one-loop, so that for the

calculation of general amplitudes we are free to use Green functions for either set of fields,

thus partially regaining the simplicity of the CSW rules for the regulated theory. In theories

with exact supersymmetry these problems are absent and it is known that four dimensional

MHV vertices and MHV rules may be used to recover all amplitudes at one loop [26].

We begin by describing the canonical transformation as it is constructed in four di-

mensions. Using light-cone co-ordinates in Minkowski space

x̂ = 1√
2
(t − x3), x̌ = 1√

2
(t + x3), z = 1√

2
(x1 + ix2), z̄ = 1√

2
(x1 − ix2). (1.1)

and the gauge condition Â = 0 allows the Yang-Mills action to be written in terms of

positive and negative helicity fields A ≡ Az and Ā ≡ Az̄ (after elimination of unphysical

degrees of freedom) as the light-cone action

S =
4

g2

∫

dx̂

∫

Σ
d3x (L−+ + L−++ + L−−+ + L′−−++), (1.2)

where

L−+ = tr Ā
(

∂̌∂̂ − ∂∂̄
)

A , (1.3)

L−++ = −tr (∂̄∂̂−1A) [A, ∂̂Ā] , (1.4)

L−−+ = −tr [Ā, ∂̂A] (∂∂̂−1Ā) , (1.5)

L′−−++ = −tr [Ā, ∂̂A] ∂̂−2 [A, ∂̂Ā] , (1.6)

and Σ is a constant-x̂ quantisation surface and d3x = dx̌ dz dz̄.

The combination L−+ + L−++ by itself describes self-dual gauge theory [14]. At

tree-level this is a free theory because the only connected scattering amplitudes that can

be constructed involve one negative helicity particle and an arbitrary number of positive

helicity particles. The Feynman diagrams contributing to this are the same as in the full

Yang-Mills theory, for which such amplitudes are known to vanish. (Bizarrely, the one-loop

amplitudes for processes involving only positive helicity particles are non-zero, and these

are the only non-vanishing amplitudes in the theory.) This encourages us to find a new field

B that is a non-local functional of A on the surface of constant x̂ such that L−+ + L−++

can be written as a free theory, i.e.

L−+[A, Ā] + L−++[A, Ā] = L−+[B, B̄] , (1.7)

– 2 –
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where B̄ is determined by the requirement that the transformation be canonical:

∂̂Āa(x̂,x) =

∫

Σ
d3y

δBb(x̂,y)

δAa(x̂,x)
∂̂B̄b(x̂,y) ⇔ ∂̂B̄a(x̂,x) =

∫

Σ
d3y

δAb(x̂,y)

δBa(x̂,x)
∂̂Āb(x̂,y). (1.8)

This transformation is readily expressed in terms of the fields after taking the Fourier

transform with respect to position within the quantisation surface

B(x̂,p) = A(x̂,p) + (1.9)
∞
∑

n=2

∫

d3k1

(2π)3
. . .

d3kn

(2π)3
p̂n−1 (2π)3 δ3(p −∑ki)

(p, k1) (p, k1 + k2) . . . (p, k1 + · · · + kn−1)
A(x̂,k1) . . .A(x̂,kn)

where

(k1, k2) ≡ k̂1k2 − k̂2k1 . (1.10)

The transformation is therefore local in x̂ and the coefficients of the products A . . .A are

independent of both x̂ and k̄. (1.8) shows that Ā is a linear functional of B̄, which we write as

Ā(x̂,p) = B̄(x̂,p)

+
∞
∑

m=3

m
∑

s=2

∫

d3k1

(2π)3
. . .

d3kn

(2π)3
k̂s

p̂
Ξs−1(p,−k1, . . . ,−km)

×(2π)3 δ3(p−
∑

ki)B(x̂,k1) . . . B̄(x̂,ks) . . .B(x̂,km) (1.11)

so that when the remaining terms in the action are written in the new variables we obtain

an infinite series, each term of which contains two powers of B̄. Labelling these terms by

their helicities gives

L[A, Ā] = L−+[B, B̄] + L−−+[B, B̄] + L−−++[B, B̄] + L−−+++[B, B̄] + · · · . (1.12)

The coefficients of the fields in the interaction terms can be shown [16], by explicit calcu-

lation, to consist of the Parke-Taylor amplitudes [17] (continued off-shell).

The LSZ procedure gives scattering amplitudes in terms of the momentum space Green

functions (suitably normalised) for A and Ā fields by cancelling each external leg using a

factor p2 and then taking each momentum on-shell, p2 → 0. The equivalence theorem for

S-matrix elements seems to allow us to use Green functions for the B and B̄ fields instead

of the A and Ā, provided we include a multiplicative wave-function renormalisation. This

is because, to leading order in the fields, A is the same as B. In any Feynman diagram

contributing to a Green function these fields are attached to the rest of the diagram by a

propagator ∼ 1/p2 which cancels the LSZ factor of p2 and so survives the on-shell limit.

In the higher order terms in (1.10) the momentum p is shared between the A fields, so the

propagators that attach these to diagrams cannot directly cancel p2. The cancellation can

occur if the diagram forces just these momenta to flow together through some internal line,

because by momentum conservation this line will contribute ∼ 1/p2. The effect of such

diagrams is to renormalise the field, and this will cancel in the computation of scattering

amplitudes. Another source of 1/p2 could be the kernels in (1.10). These kernels are non-

local within the quantisation surface, and a requirement of the equivalence theorem is that

– 3 –
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the transformation be local. However our transformation is still local in light-cone ‘time’

x̂ which means that the kernels are independent of p̌ (and also, for other reasons, p̄) so it

is hard (but not impossible, as we will see) to imagine how the kernels can generate the

1/p2 needed to stop us generalising the theorem to the case in hand.

So it would seem safe to invoke the S-matrix equivalence theorem and use the B fields

to calculate scattering amplitudes, expecting to get physical gluon amplitudes. It is clear

that the new Lagrangian would then generate the CSW (or MHV) rules of [1], and, once we

have a Lagrangian we are much closer to being able to generalise the rules beyond tree-level.

However, this cannot be correct as the rules cannot generate the one-loop amplitudes for

processes in which the gluons all have positive helicity. These amplitudes have long been

considered to be related to an anomaly [18]. In the context of the change of variables from

A to B this anomaly could be related to the Jacobian which ought to be unity since the

transformation is canonical. However, in [15] it was shown instead that these amplitudes

result from an evasion of the equivalence theorem when the theory is formulated using

dimensional regularisation. This implies a flaw in the argument we have just presented.

Specifically, it was shown that in the case of the four-point all-plus amplitude the change

of variables can be implemented with unit Jacobian by directly comparing both sides of:

lim
p2

i→0

∫

D(A, Ā) eiSlc p2
1 Āa1(p1) . . . p2

4 Āa4(p4) =

lim
p2

i→0

∫

D(B, B̄) eiSMHV p2
1 {B̄a1(p1) + . . . } . . . p2

4 {B̄a4(p4) + . . . } (1.13)

where the dots in B̄(p1) + . . . represent the extra terms involving the Ξ in (1.11). If we

ignored these extra terms, as the S-matrix equivalence theorem implies we should, then the

right-hand side would vanish because there are no interactions in SMHV that would allow us

to contract all the B̄ together. Since it is known that this amplitude is in fact non-zero the

extra terms must contribute and the equivalence theorem is not directly applicable. These

extra terms appear to spoil the efficiency of our approach. If we have to include the details

of the transformation in computing scattering amplitudes then we are unlikely to be able to

profit from any gains resulting from the simplicity of the MHV Lagrangian. It is the purpose

of this paper to investigate just how damaging this is. We will see that actually the problem

is quite contained and the equivalence theorem is only spoilt for a class of known amplitudes.

To simplify our discussion we will regulate using Four-Dimensional-Helicity regular-

isation [19] in which the external helicity are in four dimensions and only the internal

momenta are in D dimensions. It is not essential to use this scheme, and in our earlier

paper [15] we used standard dimensional regularisation, but it will simplify our expressions

considerably. In section 2, we will describe this. Then in section 3, we examine the canon-

ical transformation using it. We will find that the effect of regularisation is to make only

minor changes to the recursion relations for the expansion coefficients. In order to avoid

spurious poles in the recursion expansion of Ξs, we also establish a new recursion relation

of Ξs which involves only true singularities in each term of the expansion. As a byproduct

we also find a relation between the tree-level light-cone diagrams and the canonical ex-

pansion coefficients, which will facilitate the singularity analysis in the translation kernel

– 4 –
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contribution later. We also review the tree-level evasion of the equivalence theorem for the

(− + +) amplitude in section 4.

After this preparation, in section 5, we will discuss systematically the different ways

that the S-matrix equivalence theorem can be evaded. We first argue that at tree-level

evasion will not occur in higher point amplitudes. Then we discuss the three ways that the

theorem can potentially be evaded at one-loop: by dressing propagators, in tadpoles, and

by infrared divergences. We will conclude that only tadpoles can evade the equivalence

theorem at one-loop. During this discussion, we find that there is a puzzle in the (+ + −)

amplitude with an external leg dressed by a tadpole. By examining the calculation of the

(+ + +−) amplitude in section 6, we find that the one-minus-helicity amplitudes should

come just from tadpoles made out of MHV vertices, but when we cut the diagrams there

appear to be additional contributions from equivalence theorem evading tadpoles which

can dress external legs. In section 7, we resolve this double-counting puzzle by choosing

a suitable limiting order in the LSZ procedure and show that these extra terms do not

contribute to the on-shell amplitude. Section 8 is the conclusion.

2 Dimensional regularisation

We will regulate the ultra-violet divergences of pure Yang-Mills by working in arbitrary

space-time dimension, D, and using co-ordinates which replace the pair z, z̄ of complex

space-like co-ordinates by D/2 − 1 such pairs, z(i), z̄(i). In [15] we used standard dimen-

sional regularisation in which the gauge-field Aµ has D space-time components. We could

instead use four-dimensional-helicity regularization (FDH) [19] and keep µ four dimen-

sional. Consequently polarisation vectors would remain four dimensional, so we retain just

two helicities, and the gauge invariance of the action is four dimensional. Just as in the

usual dimensional regularisation the momenta of ‘physical’ gluons which appear in asymp-

totic states of scattering processes also remain in four dimensions, but the momenta of

virtual gluons that appear as internal lines in Feynman diagrams will be D dimensional.

The advantage of FDH is that the light-cone gauge action is very similar to the four di-

mensional version, the only change being in the free part which becomes

L−+ = tr Ā



∂̌∂̂ −
D/2−1
∑

i=1

∂(i)∂̄(i)



 A .

Tree-level amplitudes are unchanged when the external legs all have four dimensional mo-

menta, however when the external legs are allowed to have D dimensional momenta then

they are modified. In particular the amplitudes in which all but one of the scattered glu-

ons have the same helicity no longer vanish. This is responsible for the non-vanishing of

the one-loop amplitude in which all the scattered gluons have the same helicity because

the optical theorem relates the imaginary part of this latter amplitude to the product of

tree-level amplitudes of the former. The one-loop four-gluon all positive helicity reduced

amplitude is [20]

− ig4

48π2

{p1, p2} {p3, p4}
(p1, p2) (p3, p4)

(2.1)

– 5 –
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where p1, . . . , p4 are the momenta of the gluons and {p1, p2} ≡ p̂1p̄2 − p̂2p̄1. The all-plus

one-loop amplitudes are missing from a näıve application of the MHV rules at one-loop

because if we are limited to vertices of Parke-Taylor type then we cannot construct such

amplitudes. (In [15] it was shown that such amplitudes originate in a failure of the S-matrix

equivalence of the A and B fields, we shall enlarge on this later.)

The failure of the one minus rest plus helicity tree-level amplitudes to vanish has

significant consequences for the attempt to construct an MHV Lagrangian in D dimensions.

Firstly it means that the theory described by the truncated Lagrangian L−+ +L−++ that

generates these amplitudes is not free. Secondly it means that the Parke-Taylor vertices

are likely to be much more complicated in D dimensions because their simplicity in four

dimensions can be explained within the BCFW recursion method [3] as deriving from the

vanishing of the one minus rest plus tree-level amplitude. We will now investigate how

damaging these facts are.

3 Canonical transformation in D dimensions

3.1 Recursion relations for the expansion coefficients

Perhaps surprisingly we can still construct a canonical transformation in D dimensions so

that (1.7) holds. Using FDH regularization, and given (1.8) we have to solve

ωA(x) + A(x)

(

∂̄

∂̂
A(x)

)

−
(

∂̄

∂̂
A(x)

)

A(x) =

∫

x̂=const.

ω′ B(x′)
δA(x)

δB(x′)
dD−1x′ (3.1)

where

ω =

D/2−1
∑

i=1

∂(i)∂̄(i)/∂̂ .

Re-arranging:

ωA(x) −
∫

x̂=const.

ω B(x′)
δA(x)

δB(x′)
dD−1x′ = −A(x)

(

∂̄

∂̂
A(x)

)

+

(

∂̄

∂̂
A(x)

)

A(x) . (3.2)

We make the basic assumption, appropriate to perturbation theory, that we can expand

the Fourier transform of A in powers of the transform of B, with kernels Υ. (Note we use

the same symbol for the fields and their Fourier transforms)

Ap =

∞
∑

n=1

∫

Υ(p, p1, . . . , pn) δ(p +

n
∑

i=1

pi)B1̄ . . .Bn̄ dDp1 . . . dDpn , (3.3)

where we adopt the notation that the subscripts of the fields label the momenta: Ap ≡ A(p)

and Bı̄ ≡ B(−pi). Then the first term on the left-hand-side of (3.2) multiplies each term in

the expansion by the Fourier transform of ω, iΩ0 ≡ iΩ(p), whereas the second replaces each

Bı̄ by iΩiBı̄, and the right-hand-side glues two expansions together using what is essentially

the three-point vertex corresponding to helicities + + − (and which we are attempting to

– 6 –
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eliminate from the theory by performing the canonical transformation to new variables).

This is most easily represented graphically. Let us denote the expansion (3.3) by

A = 1 B + 2

B

B
+ B3

B

B

+ . . . .

(3.4)

and the Fourier transform of the right-hand-side of (3.2) by

i

j

k

= V̄ 2(pj , pk, pi)/p̂i ,

where V̄ 2(p1, p2, p3) = i(1̄/1̂ − 2̄/2̂)3̂ is the factor from the three-point (+ + −) vertex of

the lagrangian (1.12). The small black dots in the diagram denote the minus-helicity end

of the propagators. Then the terms in (3.2) with n B fields give

(

∑n
0 Ωi

)

n

B....
B

= −∑r+s=n

r

B....
B

s

B
..
..
B

If we were to use usual dimensional regularisation rather than FDH, we would have arrived

at the same graphical equation, but with indices attached to the lines and V̄ 2(pj , pk, pi) =

i({pi, pj}KδIJ/p̂k + {pk, pi}JδKI/p̂j), in the notation of [15]. We can divide through by
∑

Ω when it is non-zero and obtain the recursion relation for Υ in momentum space

Υ(1̄ · · · n̄) =
1

1̂(Ω1+ · · ·+ Ωn)

n−1
∑

j=2

V̄ 2(P2j , Pj+1,n, 1)Υ(−, 2̄, . . . , j̄)Υ(−, j + 1, . . . , n̄) , (3.5)

where we use the notation Pi,j = pi + pi+1 + · · ·+ pj, for j > i, Pi,j = pi + pi+1 + · · ·+ pn +

p1 + · · · + pj for j < i, n̄ = −pn and the − in the bracket of Υ denotes the minus of the

sum of all the other momenta in Υ. This can be represented graphically

n

B....
B

=
1

Pn
0 Ωi

∑

r+s=n

r

B....
B

s

B
..
..
B

We will encounter situations when
∑

Ω vanishes, and then we need a prescription for

dealing with this singularity. We will address this in the appendices.

If we denote −1/(
∑n

0 Ωi) by a closed broken curve cutting each line whose momentum

– 7 –
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appears in the sum, each order of the expansion of A can be represented as

n

B1

...
Bn

= − ∑

r+s=n

r

B1

...
B

s

Bn

...

B

(3.6)

where

p̄ n

B1

...
Bn

=
∫

1···n Υ(p̄1̄ · · · n̄)B1 · · · Bn .

This can be easily iterated, starting with the leading term A = B:

A = B −
B

B
+

B

B

B

+

B

B

B

+ . . .

Similarly we can expand Ā in terms of B, and B̄ in which it is linear. It is more convenient

to expand ∂̂Ā in terms of B, and ∂̂B̄, and we denote this graphically by

∂̂Ā = ∂̂B̄ +
∂̂B̄

B
+

B

∂̂B̄

+ ∂̂B̄

B

B

+ B

∂̂B̄

B

+ B

B

∂̂B̄

+ . . . .

and in momentum space we use Ξ to denote the expansion coefficients

p̄ ı̂B̄in

B1...
... Bn

=
∫

1···n ı̂Ξi(p̄1̄ · · · n̄)B1 · · · B̄i · · · Bn .

– 8 –
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Using this and (3.4) allows us to depict the second of (1.8) as

∂̂B̄ =
∑

B

B

..

..
∂̂B̄

B

B

..

..

Since there are no B-fields on the left-hand-side we can equate to zero the sum of terms on

the right that contain precisely n B-fields, when n > 0:

0 =
∑

B

B

..

..
∂̂B̄

B

B

..

..

The term in which there are no B-fields in the left-hand factor is the kernel we are looking

for, so

∂̂B̄

B

B

..

..
= −∑′

B

B

..

..
∂̂B̄

B

B

..

..

(3.7)

where the prime on the sum indicates that we sum over terms in which there is at least

one B-field in the left-hand factor, and the ordering of fields matches on both sides of the

equation. This is iterated to yield

∂̂Ā = ∂̂B̄ +
B

∂̂B̄
+

∂̂B̄

B
−

∂̂B̄

B

B

−
B

B

∂̂B̄

+

B
B

∂̂B̄

+ . . .

(3.8)

However, the broken curves in the above diagrams do not denote the real singularities in the

expansion of Ā. Some singularities are cancelled out. For example, by explicit calculation,

one finds that the singularity represented by the inner broken curves around the left big

black dot in the fifth and sixth terms are cancelled out. In fact, by induction, one can

– 9 –
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prove another recursion relation of Ξs:

Ξi−1
1̄,...,n̄

= − 1

Ω1+ · · ·+ Ωn

(

i−1
∑

l=2

1

P̂l+1,n

V̄ 2(p1, P2,l, Pl+1,n)Υ(−, 2̄, . . . , l̄)Ξi−l(−, l + 1, . . . , n̄)

+

n−1
∑

l=i

1

P̂2,l

V̄ 2(Pl+1,n, p1, P2,l)Ξ
i−1(−, 2̄, . . . , l̄)Υ(−, l + 1, . . . , n̄)

)

. (3.9)

Using this we can represent each order of the expansion of ∂̂Ā by diagrams:

∂̂B̄n
B...

... B
=

∑

r+s=n

(

r

B
...
B

...
∂̂B̄...

s

B

B

+

...
∂̂B̄...

r

B

B
...s

B

B

)

(3.10)

The proof of the new recursion relation starts with the old one (3.7) and uses relation

l

l+r+s+1

1

...

...

r

l+1

...
l+r

is

l+r+s

...

...

l+r+1
−

...

...

r
...

s
...
...

= −
...
...

r
...

s
...
...

(3.11)

repeatedly (see appendix B for a sketch of the proof). The relation above is simply a result

of the equation

1

Ωl+r+s+1,l +
∑l+r+s

i=l+1 Ωi

− 1
∑n

i=1 Ωi
=

Ωl+1,l+r+s +
∑l

i=l+r+s+1 Ωi

(Ωl+r+s+1,l +
∑l+1

i=1 Ωl+r+s)
∑n

i=1 Ωi

(3.12)

where Ωi,j = Pi,jP̄i,j/P̂i,j . The numerator on the right-hand-side of (3.12) will cancel the

denominator of the left Υ blob in the diagrams. We denote this cancellation by filling in

the left-hand blob. In fact, there is an easy way to prove this recursion relation in four

dimensions where we do not care about regularization: If we use the relation obtained in [16]

Ξi−1(1 · · · n) = − ı̂

1̂
Υ(1 · · · n) , (3.13)

this recursion relation recovers that of (3.6) for Υ.
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3.2 Reconstructing the expansion coefficients from tree-level light-cone dia-

grams

From (3.5) we observe that the expansion terms of A can be constructed as follows: for

each term of the expansion, draw all the tree-level Feynman diagrams with an A as one

end of an external propagator and all Bs in the term as amputated external lines using only

(+ +−) vertices; then calculate this diagram using V̄ 2 as vertices and 1/(p̂(Ωp +
∑

Ω)) as

corresponding propagators. Notice that the light-cone Feynman rule for vertex (+ +−) is

V̄ (1, 2, 3) = i
4

g2
V̄ 2(1̄, 2̄, 3̄) = −i

4

g2
V̄ 2(1, 2, 3) (3.14)

and the light-cone propagator is

〈ApAp̄〉 = −i
g2

2p2
. (3.15)

So

〈A3A3̄〉V̄ (1, 2, 3) = − 2

p2
3

V̄ 2(1, 2, 3) (3.16)

is consistent with the coefficient of each term in the recursion relation if we make the

replacement −2/p2
3 → 1/(p̂3(Ω3 + Ω1 + Ω2)). As a result, we can reconstruct the terms of

A from light-cone tree-level calculations by replacing the light-cone propagators using

1

P 2
ij

→ − 1

2P̂j+1,i−1(Ωj+1,i−1 + Ωi + Ωi+1 + · · · + Ωj)
. (3.17)

Here Pj+1,i−1 should be understood as the sum of all momenta except those labelled from

i to j. The momentum in each term in the bracket of the denominators corresponds to the

outgoing momentum of the external line of the sub-tree diagram not involving A when the

propagator is cut. For example, for terms with B2B3B4:

A1̄ ∼ Υ(1̄2̄3̄4̄)B2B3B4

=
1

1̂(Ω1 + · · · + Ω4)

(

V̄ 2(2, 34, 1)V̄ 2(3, 4, 12)

P̂12(Ω12 + Ω3 + Ω4)
+

V̄ 2(23, 4, 1)V̄ 2(2, 3, 41)

P̂41(Ω41 + Ω2 + Ω3)

)

×B2B3B4 . (3.18)

The corresponding diagrams are:

A1̄

B2

B3

B4

A1̄

B2

B3

B4

From the light-cone calculation of these Feynman diagrams, we have:

22 1

p2
1

(

V̄ 2(2, 34, 1)V̄ 2(3, 4, 12)

P 2
12

+
V̄ 2(23, 4, 1)V̄ 2(2, 3, 41)

P 2
41

)

(3.19)
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in which the two terms correspond to the two tree-level Feynman diagrams. We can see

that (3.18) and (3.19) only differ by the change

1/p2
1 → −1/(21̂(Ω1 + · · · + Ω4)) , (3.20)

1/P 2
12 → −1/(2P̂12(Ω12 + Ω3 + Ω4)) , (3.21)

1/P 2
41 → −1/(2P̂41(Ω41 + Ω2 + Ω3)). (3.22)

If we put p2, p3, p4 on shell, the → in the above equations can be replaced by =, thus (3.18) is

equal to (3.19) which gives the translation kernel contribution to the amplitude as it should.

For Ā, the same rule also holds allowing us to reconstruct the expansion of Ā from

light-cone calculations: one needs to first draw the tree-level diagrams with one Ā as an

external propagator, all the B, B̄ in the term as amputated legs using (++−) vertices, and

then calculate the diagram using the light-cone Feynman rules with the replacement (3.17).

This can be justified from the recursion relation (3.9) with a similar discussion to that for

Υ: First, in (3.9) all the Υ’s already obey this rule. The −1/P̂l+1,n = 1/P̂1,l in the first

term in the bracket will combine with the 1/
∑

Ω factor in the expansion of the next Ξ in

this term to be 1/(P1,l(Ω1,l +
∑n

i=l+1 Ωi)) which is just what we need to be consistent with

the rule. It is the same for the second term in the bracket. We only need to consider the

factor of the Ξ in the first iteration and the last iteration. We should divide the expansion

of ∂̂Ā by the corresponding ip̂ in the momentum space, to obtain the expansion of Ā. This

factor 1/p̂1 will combine with the factor of the first Ξ to be 1/(p̂1(
∑n

i=1 Ωi)) in (3.9). The

last iteration corresponds to the right-most grey blob adjacent to ∂̂B in each term of the

full iteratively expanded diagrams in (3.10). The extra factor 1/ı̂ in the Ξ of the last step of

the iteration will cancel the ı̂ in the ı̂Bi from ∂̂B. So just as in the case of Υ, the expansion

of Ā requires calculating tree-level diagrams using V̄ 2 as vertices and 1/(p̂(Ωp +
∑

Ω)) as

the propagators, and so obeys the same rule.

4 ‘Missing’ amplitudes from equivalence theorem evasion reviewed

In [15] we explained how the tree-level (−+ +) and the one-loop (+ + · · ·+ +) amplitudes

are obtained from the B, B̄ theory, despite there being no vertices in this theory that could

contribute. The amplitudes are non-zero because the equivalence theorem is not directly

applicable to our non-local transformation. Thus A and Ā do not create the same particles

as B, B̄. This would appear to drastically complicate the calculation of amplitudes within

the B, B̄ theory. It is the main purpose of this paper to show that only certain amplitudes

are affected by this, and that in the general case we can use either set of fields to generate

amplitudes. In this section we briefly review the ‘missing’ tree-level amplitude.

In light-cone gauge Yang-Mills theory the tree-level contribution to the Green function

〈A(p1) Ā(p2) Ā(p3) 〉 comes from the vertex in L−++, so to this order, and taking account

of the iǫ-prescription in propagators (and suppressing Lie algebra indices on the under-
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standing that we deal with colour-ordered amplitudes)

(p2
1 + iǫ) (p2

2 + iǫ) (p2
3 + iǫ) 〈A(p1) Ā(p2) Ā(p3) 〉 =

( )

p̂1,

p2

p3

p1

and as all three momenta go on-shell this becomes the three-point amplitude (which van-

ishes in four dimensional Minkowski space, but is non-zero in other signatures and dimen-

sions.) Clearly 〈 B(p1) B̄(p2) B̄(p3) 〉 = 0 at tree-level due to the helicity assignment of the

Parke-Taylor vertices. To compute the Green function in the B, B̄ theory we must use the

translation kernels:

〈A(p1) Ā(p2) Ā(p3) 〉 = −〈
(

B(p1) + p1

B

B
+ . . .

)

×

1
p̂2

(

∂̂B̄(p2) − p2

B

∂̂B̄
− p2

∂̂B̄

B
+ . . .

)

×

1
p̂3

(

∂̂B̄(p3) − p3

B

∂̂B̄
− p3

∂̂B̄

B
+ . . .

)

〉

since no vertices contribute to leading order this can be computed by contracting the B, B̄
fields using the free propagator, which we denote by

〈A(p1) Ā(p2) Ā(p3) 〉 =

+

p2

p3

p1

( )

p̂1

p̂2
+

p2

p3

p1

( )

p̂1

p̂3

p2

p3

p1

=

( )

p̂1

(p2
1
+iǫ) (p2

2
+iǫ) (p2

3
+iǫ)

(

p2
1
+iǫ
p̂1

+
p2
2
+iǫ
p̂2

+
p2
3
+iǫ
p̂3

)

,

p2

p3

p1

The broken line cutting the three lines denotes division by

−
∑

j

Ω(pj) = −
∑

j

D/2−1
∑

i=1

pj(i)p̄j(i)/p̂j ,

which does not depend on the p̌j. However, if we add
∑

j p̌j, which vanishes by momentum

conservation, this becomes
∑

j p2
j/p̂j . If we also include iǫ terms to match the last factor

then we reproduce the light-cone Yang-Mills amplitude. This tells us how to treat 1/
∑

Ω

when the denominator is singular, so in general the broken lines in our diagrams will denote

1
∑

j

p2
j+iǫ

p̂j

.
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It is of course not surprising that we reproduce the usual Green function, as all we have

done is transform to new variables to do the calculation. It will be useful, for what comes

later, to examine how the equivalence theorem has been evaded. Note that the combined

limit p2
1 + iǫ, p2

2 + iǫ, p2
3 + iǫ → 0 is not valid for each term separately, because the value of

lim
p1+iǫ2,p2

2
+iǫ,p2

3
+iǫ→0

p2
1 + iǫ

p2
1
+iǫ

1̂
+

p2
2
+iǫ

2̂
+

p2
3
+iǫ

3̂

depends on the order in which the limits are taken, but it is valid to take the limit of the

sum of the three terms because the factor (p2
1 + iǫ)/1̂ + (p2

2 + iǫ)/2̂ + (p2
3 + iǫ)/3̂ in the

denominator is cancelled out. Consequently we can take the limit of the sum in any order.

Suppose we take the legs on-shell one after another, beginning with p2 and p3. We include

ǫ in the mass-shell condition because it enters the propagators for external legs that have

to be cancelled by the LSZ factors. Since p2
2 + iǫ and p2

3 + iǫ cancel the propagators in

the first diagram, but not in the other two, it is clear that for general p1 the contributions

from the last two diagrams are wiped out in the limit leaving

limp2
2
+iǫ→0 limp2

3
+iǫ→0 (p2

2 + iǫ) (p2
3 + iǫ) 〈A(p1) Ā(p2) Ā(p3) 〉 =

limp2
2
+iǫ→0 limp2

3
+iǫ→0 (p2

2 + iǫ) (p2
3 + iǫ)

p2

p3

p1

( )

=

limp2
2
+iǫ→0 limp2

3
+iǫ→0

1
p2
1
+iǫ

p̂1
+

p2
2
+iǫ

p̂2
+

p2
3
+iǫ

p̂3

p2

p3

p1

( )

=

p̂1

p2
1
+iǫ

p2

p3

p1

( )

.

So the 1/(p2
1+iǫ) needed to cancel the p2

1+iǫ coming from the LSZ prescription is generated

as part of the translation kernels, even though these appeared to be independent of the p̌

components of momenta. We should point out that ‘missing amplitudes’ can be generated

in different ways if the theory is formulated differently such as in the gauge fixing of the

twistor action [22] or in the light-cone friendly regularisation of [23].

5 Equivalence theorem evasion in general.

When the equivalence theorem holds we can ignore all except the leading translation ker-

nels. However the theorem will be evaded whenever the translation kernels that express

A(p) or Ā(p) in terms of B and B̄ produce a 1/(p2 +iǫ) that can cancel the LSZ factors. We

will now list all the types of process in which this can occur. The singular terms originate

in the 1/
∑

Ω represented by the broken lines in our diagrams. These must cut the line
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with momentum p if we are to end up with 1/(p2 + iǫ). Suppose that the other lines cut

carry momenta p1, . . . , pn, then

1
∑

Ω
=

1

p2+iǫ
p̂ +

∑n
j=1

p2
j+iǫ

p̂j

,

so we have to examine the conditions under which
∑n

j=1 (p2
j + iǫ)/p̂j = 0. Notice that here

we actually take
∑n

j=1 (p2
j + iǫ)/p̂j → 0 limit first and then p2 → 0 in the LSZ procedure.

We will see that this is valid in a similar way to the three point case.

5.1 Tree-level

In the absence of loops there are two ways that
∑n

j=1 (p2
j + iǫ)/p̂j = 0. The first is that

each of the legs cut by the broken line are external and so their momenta must be put on

shell. For example, in the four-particle process with one − helicity and three + helicity

gluons we need the Green function 〈A(p1) Ā(p2) Ā(p3) Ā(p4) 〉. Contributing to this are

translation kernels for A(p1), Ā(p2), Ā(p3), and Ā(p4) which give rise to diagrams like

p1

p4

p3

p2

in which four external legs are cut by the broken line. Since all the external lines will be

cut by the broken curve we cannot include any Parke-Taylor vertices. Consequently, in

the general case we can only ever have a contribution to a tree-level amplitude with one

− helicity external gluon and n + helicity external gluons. For each light-cone tree-level

diagram of such an amplitude, there are terms from the translation kernels that contribute.

For example, for the four-point diagram:

p1

p4

p3

p2

using the method in section (3.2), we can construct the translation kernel contribution

to this diagram from the canonical expansion of A1, Ā2, Ā3, Ā4 which can be repre-

sented graphically:

p1

p4

p3

p2

p1

p4

p3

p2
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p1

p4

p3

p2

p1

p4

p3

p2

The difference between these translation kernels and the light-cone contribution is only in

the denominators. Examining these:

lim
p2
1
,p2

2
,p2

3
,p2

4
→0

p2
1 p2

2 p2
3 p2

4







1

1̂
(

p2
1

1̂
+

p2
2

2̂
+

p2
3

3̂
+

p2
4

4̂

)

(1̂ + 4̂)
(

p2
41

1̂+4̂
+

p2
2

2̂
+

p2
3

3̂

)

p2
2p

2
3p

2
4

+
1

2̂
(

p2
1

1̂
+

p2
2

2̂
+

p2
3

3̂
+

p2
4

4̂

)

(2̂ + 3̂)
(

p2
23

2̂+3̂
+

p2
1

1̂
+

p2
4

4̂

)

p2
1p

2
3p

2
4

+
1

3̂
(

p2
1

1̂
+

p2
2

2̂
+

p2
3

3̂
+

p2
4

4̂

)

(2̂ + 3̂)
(

p2
23

2̂+3̂
+

p2
1

1̂
+

p2
4

4̂

)

p2
1p

2
2p

2
4

+
1

4̂
(

p2
1

1̂
+

p2
2

2̂
+

p2
3

3̂
+

p2
4

4̂

)

(1̂ + 4̂)
(

p2
41

1̂+4̂
+

p2
2

2̂
+

p2
3

3̂

)

p2
1p

2
2p

2
3







= lim
p2
1
,p2

2
,p2

3
,p2

4
→0

− p2
41

1̂+4̂
+

p2
1

1̂
+

p2
4

4̂
− p2

2

2̂
− p2

3

3̂

(1̂ + 4̂)
(

p2
41

1̂+4̂
+

p2
2

2̂
+

p2
3

3̂

)(

− p2
41

1̂+4̂
+

p2
1

1̂
+

p2
4

4̂

)

=
1

p2
41

, (5.1)

(We omit the +iǫ accompanying each p2 here since it is not important in our discussion.)

we see that the factor p2
1/1̂ + p2

2/2̂ + p2
3/3̂ + p2

4/4̂ in the denominator is cancelled out and

the limit procedure is valid at last. The denominator provides the propagator needed in

the light-cone computation. Since the combined limit is valid, like in the (+ + −) case,

we could take the limit in any order, for example take the p2
1, p

2
2, p

2
3 → 0 first and then

p2
4 → 0 at last. Then one finds the first three diagrams vanish and the contribution comes

only from last diagram and the factor 4̂(p2
1/1̂ + p2

2/2̂ + p2
3/3̂ + p2

4/4̂) becomes p2
4 to be can-

celled with p2
4 in the numerator from the LSZ procedure. This reproduces the light-cone

computation of the amplitude. One can imagine that the same thing happens for general

multileg one-minus-helicity amplitudes. Fortunately these amplitudes vanish at tree-level

in four dimensional Minkowski space, (and for n > 2 in arbitrary signature) which means

that the translation kernel contributions add up to zero.

The other way that
∑n

j=1 (p2
j + iǫ)/p̂j = 0 without all of the pj being external legs

is if some of the terms in the sum cancel against each other, or if the translation kernel

is connected to a vertex by a momentum that is on-shell. At tree-level this can only

occur for special choices of the momenta of the external particles, and cannot contribute

to an amplitude with generic values of external momenta. So at tree-level the equivalence

theorem can be used for non-trivial generic amplitudes, which is why the MHV rules

correctly reproduce tree-level amplitudes without having to take account of the translation

between A, Ā and B, B̄ fields.
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5.2 One loop

There are several processes that can occur at one-loop order that give rise to evasions of S-

matrix equivalence. The first is that loops can dress the propagators that occur in tree-level

diagrams. Secondly, we can have tadpole diagrams in which two legs of a translation kernel

are contracted with each other. These diagrams are responsible for the all positive helicity

amplitudes ‘missing’ from a straightforward application of the MHV rules. Thirdly we can

have more general processes in which the loop integration has an infra-red divergence that

might cancel the LSZ factor.

5.2.1 Dressing propagators

Loops can dress propagators, so, at one-loop, as for tree-level
∑n

j=1 (p2
j + iǫ)/p̂j can vanish

when each of the pj is the momentum of an on-shell gluon. For example, the first interac-

tion in (1.12), L−−+ which we denote by

B
B̄

B̄

can be contracted with the fifth term in the expansion of ∂̂Ā equation (3.8)

B
B

∂̂B̄
to give

B

B̄

This will contribute to the Green function 〈A(p1) Ā(p2) Ā(p3) 〉, for example by contract-

ing B with the leading term in the expansion of Ā(p2) and B̄ with that of A(p1). The

propagators cancel two of the LSZ factors for the + + − amplitude. Taking p2
2 + iǫ = 0

and p2
1 + iǫ = 0 causes the 1/

∑

Ω factor denoted by the inner broken curve to reduce

to 1/(p2
3 + iǫ), which will cancel the remaining LSZ factor, thus evading the equivalence

theorem and producing a contribution to the three-point amplitude that is the same as the

tree-level diagram with a self-energy insertion on the p1 leg. In Minkowski space the three-

point amplitude vanishes on-shell anyway, so this evasion appears inconsequential. For

complex on-shell momenta, of the kind used in the BCFW rules, this amplitude does not

vanish, so it is worthwhile considering this further. We noted earlier that the relations (3.9)

enable us to re-write the series for Ā in a way that moves the position of the dotted lines

so that the singularity 1/
∑

i Ωi corresponding to the dotted lines around the left big black
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dot is cancelled out after we sum the fifth and sixth term in (3.8). These combine to give

Ā

B

B̄

Since the contribution of the internal line to the denominator
∑

p2
i /p̂i represented by the

inner broken curve can not be zero, it is obvious that there is no 1/p2 generated in this

diagram. So this diagram can not contribute to the amplitude. The same is true for the

case of a dressed propagator on a B leg:

Ā

B̄

B

The three-point interaction can dress a propagator either in the way just described,

or, potentially by two such vertices being glued together

B̄ B̄

An insertion of this kind into a diagram effectively changes a B-field into a B̄-field, however

explicit calculation shows that this vanishes. At one-loop the only other vertices that can

contribute to dressing propagators are contained in L−−++:

B̄

B

B

B̄
and these produce insertions that connect B with B̄

B B̄
Dressing propagators can produce diagrams that evade the equivalence theorem, but only if

the corresponding tree-level diagrams do so already, in which case the result is proportional

to the tree-level amplitude. As we have seen this only happens for amplitudes that vanish

in the physical dimension, so this source of equivalence theorem evasion has no physical

consequence. However there is a subtlety involved in the one-loop (+ + −) amplitude

in (+ + −−) signature. In section 6, we will find that the tadpoles formed from MHV
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vertices already include the diagrams with external leg corrections. Including translation

kernel contributions in the amplitude would appear to count the diagrams with external

leg corrections twice. We will solve this puzzle in section 7.

5.2.2 Tadpoles

At tree-level we dismissed the second way that
∑n

j=1 (p2
j + iǫ)/p̂j could vanish because it

could only apply to special configurations of external momenta. When we integrate over

loop momenta such special configurations can easily arise, and so we must analyse them.

The simplest way that two of the terms in
∑n

j=1 (p2
j + iǫ)/p̂j could cancel without each

being on-shell occurs in the translation kernel for Ā when a B and B̄ field are contracted,

because then their lines carry equal and opposite momenta. These are ‘tadpoles’ when

drawn in terms of the translation kernels, e.g.
B B

but are rather more complicated when drawn in terms of the graphical solution. For

example, one of the terms contributing to this tadpole originates in the following term

which appears in the expansion of Ā:

∂̂B̄

BB
B

Contracting B̄ with a B and the remaining fields with external gluons gives

p3

p2

p1

When the p2 and p3 are put on-shell, p2
2 + iǫ = 0 and p2

3 + iǫ = 0, so the dotted line cutting

the three external momenta and the gluon propagator reduces to
∑n

j=1 (p2
j + iǫ)/p̂j =

(p2
1 + iǫ)/p̂1 resulting in an evasion of S-matrix equivalence. Because the contraction used

to make a tadpole removes a B and a B̄ field from the translation kernels for Ā they can

contribute to one-loop amplitudes involving only positive helicity gluons. In [15] it was

found that it is this mechanism that is responsible for generating the one-loop all plus

four-point amplitude (2.1) that a näıve application of the MHV rules cannot account for.
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5.2.3 Infra-red divergent loop integration

Evasion of S-matrix equivalence might arise in a more general situation when a vertex is

attached to a translation kernel. For illustration we focus on one term in the expansion

of Ā and contract two of the legs with those of some arbitrary subgraph denoted by the

open circle:

p
q

−j − q

p1

B̄

B

.......

If we take p2
1+iǫ = 0, (having cancelled the corresponding LSZ factor with the propagator,)

the loop integration is

∫

dDq
1

p2+iǫ
p̂ + q2+iǫ

q̂ − (q+j)2+iǫ

q̂+ĵ

1
j2+iǫ

̂ + q2+iǫ
q̂ − (q+j)2+iǫ

q̂+ĵ

1

q2 + iǫ

1

(j + q)2 + iǫ
f(j, q)

(5.2)

with j = p + p1.

We need to investigate whether this integral can generate a factor of 1/(p2 + i ǫ). To

do so it would have to be divergent as p goes on-shell. The integrand has a number of

singularities as a function of the components of loop momentum qµ but by deforming the

integration contours into the complex qµ-planes the surfaces where the integrand diverges

can typically be avoided so that the integral is well-defined. We are aided in identifying

the directions in which to deform the contours by the iǫ prescription. (We can ignore what

happens as q → ∞ as the ultra-violet behaviour is regulated). However, as we vary p the

positions of these singularities move, and it is possible that our integration surface may

lie between several singularity surfaces that approach each other for some values of p and

pinch the contours so that they can no longer be deformed to avoid the singularity. As this

happens the value of the integral itself diverges as a function of p. Prior to taking the on-

shell limit we can deform the integration surface so that it consists of a piece surrounding

the singularities and a piece that we can move well away from either singularity. In the on-

shell limit we can ignore this last piece because of the LSZ factor, p2 + iǫ. We now focus on

the contribution from the piece surrounding the singularity, which means that in the loop

integral we take f(j, q) as constant. We begin by integrating out the q̌ component. The

first two factors of the integrand come from the translation kernels and so do not depend

on q̌. As we close the q̌ contour in the complex plane we pick up singularities from the

propagators. Using conservation of momentum the residue can be put into a form similar

to that of the kernel, but without (p2 + iǫ)/p̂:

θ(q̂)θ(−q̂ − ĵ) − θ(−q̂)θ(q̂ + ĵ)

q̂ (q̂ + ĵ)

2πi
q2+iǫ

q̂ − (q+j)2+iǫ

q̂+ĵ

(5.3)

which, of course, does not depend on q̌. This allows us to extract 1/(p2 + iǫ) explicitly
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from the integral (5.2) which becomes

− 2πi p̂

p2 + iǫ

∫





D/2−1
∏

i=1

dq(i)dq̄(i)



 dq̂
θ(q̂)θ(−q̂ − ĵ) − θ(−q̂)θ(q̂ + ĵ)

q̂ (q̂ + ĵ)
(5.4)

×





1
p2+iǫ

p̂ + q2+iǫ
q̂ − (q+j)2+iǫ

q̂+ĵ

− 1
q2+iǫ

q̂ − (q+j)2+iǫ

q̂+ĵ



 f1(j, q) . (5.5)

Since the second factor in the integrand of (5.2) is finite when the first factor is singular,

it is irrelevant to our discussion and we absorb it into f1.

The LSZ factor is cancelled by the 1/(p2 + iǫ). If we now take the on-shell limit

p2 + iǫ → 0 then the two terms in square brackets cancel and the integral actually vanishes,

provided that no singularity is encountered as we integrate over q̂. However, for certain

values of j and q(i) both terms in the square brackets are divergent close to the real axis,

so we have to investigate the location of these singularities. The first diverges for

q̂ =
−b ±

√

b2 − 4a(c + iǫĵ)

2a
(5.6)

with

a = φ − 2ǰ , φ =
p2 + iǫ

p̂
, b = ĵφ − j2 + 2

∑

i

(

q(i)j̄(i) + q̄(i)j(i)

)

, c = −2ĵ
∑

i

q(i)q̄(i) ,

(5.7)

whilst the location of the pole in the second term is given by the above expression with φ

set to zero. For the moment treat φ as being real. Then for b2 > 4ac the poles are close to

the real axis, with an imaginary piece

∓ ǫĵ√
b2 − 4ac

. (5.8)

Since these are on the same side of the real axis for both terms in square brackets it is clear

that the contribution to the integral of these two terms cancels even when the singularities

are close to the real axis. Consequently there is no S-matrix equivalence evasion in this

case, provided that we keep φ real as we take the on-shell limit for external legs.

6 One-loop (− + ++) amplitude

In [15] we described how the one-loop (+ + ++) amplitude arises in this approach as

a tadpole-like diagram constructed from translation kernel. By contrast the one-minus

helicity amplitude is constructed from the tadpole diagram of a MHV vertex.

Let us now look at a box diagram, A(1−2+3+4+) with 1− attached to MHV (− − +)

vertex. The integrand of the light-cone amplitude is

A(1)(1−2+3+4+) = 24 V 2(ā234, 1, a)V̄ 2(4, 1a, ā23)V̄ 2(3, 41a, ā2)V̄ 2(2, 341a, ā)

p2
āp

2
1ap

2
ā23p

2
ā2

. (6.1)
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It must come from the tadpole diagram in the CSW method by connecting two lines of

six-point MHV vertices. We can identify the tadpole contributions to this amplitude in the

following way. First, we can cut any one of the four internal lines and get four tree-level

MHV diagrams.

1−

2+ 3+

4+

pa −→

1−

2+ 3+

4+ 1−

2+ 3+

4+ 1−

2+ 3+

4+ 1−

2+ 3+

4+

MHV vertices are generated by expanding the A and Ā in the lagrangian L−−+. We first

identify the three point MHV (−−+) vertex in the tree-level diagrams and the three parts in

the diagrams corresponding to the expansion of A and Ā in L−−+. By comparing with the

three parts of the diagram, we can find out the corresponding three parts in the light cone

amplitude (6.1). Then by replacing the propagators in the light-cone amplitude using (3.17)

we can reconstruct the contribution to the one-loop box diagram of the tadpole. The four

tree-level diagram contributions are (we label the internal line between leg 1 and 2 as a):

A(1,1) = 24 V 2 (ā234, 1, a) V̄ 2 (4, 1a, ā23) V̄ 2 (3, 41a, ā2) V̄ 2 (2, 341a, ā)

p2
āP̂ā23P̂ā2P̂1a

(

P 2
1a

P̂1a
+

P 2
ā

P̂ā

)(

P 2
41a

P̂41a
+

P 2
ā

P̂ā

)(

P 2
341a

P̂341a
+

P 2
ā

P̂ā

) , (6.2)

A(1,2) = 24 V 2 (ā234, 1, a) V̄ 2 (4, 1a, ā23) V̄ 2 (3, 41a, ā2) V̄ 2 (2, 341a, ā)

P 2
1aP̂ā23P̂ā2P̂ā

(

P 2
1a

P̂1a
+

P 2
ā

P̂ā

)(

P 2
ā2

P̂ā2

+
P 2

1a

P̂1a

)(

P 2
ā23

P̂ā23

+
P 2

1a

P̂1a

) , (6.3)

A(1,3) = 24 V 2 (ā234, 1, a) V̄ 2 (4, 1a, ā23) V̄ 2 (3, 41a, ā2) V̄ 2 (2, 341a, ā)

P 2
ā23P̂āP̂ā2P̂1a

(

P 2
41a

P̂41a
+

P 2
ā

P̂ā

)(

P 2
41a

P̂41a
+

P 2
ā2

P̂ā2

)(

P 2
1a

P̂1a
+

P 2
ā23

P̂ā23

) , (6.4)

A(1,4) = 24 V 2 (ā234, 1, a) V̄ 2 (4, 1a, ā23) V̄ 2 (3, 41a, ā2) V̄ 2 (2, 341a, ā)

P 2
341aP̂41aP̂āP̂1a

(

P 2
1a

P̂1a
+

P 2
ā2

P̂ā2

)(

P 2
41a

P̂41a
+

P 2
ā2

P̂ā2

)(

P 2
341a

P̂341a
+

P 2
ā

P̂ā

) . (6.5)

We have already set the p2
i in the denominator of the external particles to zero, since there is

no singularity when we put the external particles on-shell. It makes no difference if we take

the on-shell limit before or after the LSZ procedure. It is easy to check that these four terms

add up to the integrand of the light-cone amplitude for the box diagram (6.1). The other

box diagrams, triangle, bubble diagrams of light-cone amplitude can be checked in the same

way. There are some subtle problems with diagrams including corrections to external prop-

agators which we will address in next section. So, in general, one can believe that the one

loop one-minus helicity amplitudes should all come just from the tadpoles of MHV vertices.

7 One-loop (+ + −) amplitude with external tadpole dressing propaga-

tors

At first sight, for three point (++−) amplitude, there could also be contributions to the cut

diagrams considered in the previous section from translation kernels with dressed external

propagators, since they yield contributions proportional to tree-level amplitudes which are

not zero in (++−−) signature. This seems to count diagrams with corrections to external
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propagators twice. This problem arises from the order of limits in LSZ procedure. In the ex-

ample of the previous section it does not matter when we take the on shell limit because no

singularities are encountered in this limit. But we must be more careful with the diagrams

with dressed propagators on external legs because there will then be singularities from

1/
∑

Ω. We should first calculate the off-shell Green function and then apply the LSZ pro-

cedure. Also from the discussion in section (5.2.1) the Green function receives contributions

should not just from tadpoles of MHV five point vertices, but also from translation kernels

with dressed propagators. Let us look at the example of a light-cone diagram for 〈Ā1̄Ā2̄A3̄〉:

Ā1̄

l

l + p3

Ā2̄

A3̄

The integrand of the light-cone computation of the diagram for the Green function is

A(1+2+3−) = ig6 V̄ 2(1, 2, 3)V̄ 2(3̄, l + p3, l̄)V
2(−l − p3, 3, l)

p2
1p

2
2(p

2
3)

2l2(l + p3)2
. (7.1)

We have omitted the iǫ in the propagators. According to the method of the last section,

the contribution from the tadpole of MHV five-point vertices to this diagram can be con-

structed by replacing the corresponding 1/p2 → −1/(2p̂
∑

Ω):

Ā1̄

Ā2̄

A3̄

A(1)

Ā1̄

Ā2̄

A3̄

A(2)

A(1) = ig6 V̄ 2 (1, 2, 3) V̄ 2
(

3̄, l + p3, l̄
)

V 2 (−l − p3, 3, l)

p2
1p

2
2p

2
33̂
(

p2
1

1̂
+

p2
2

2̂
+

p2
3

3̂

)(

l̂ + 3̂
)(

(l+p3)
2

l̂+3̂
− l2

l̂
+

p2
1

1̂
+

p2
2

2̂

)

l2
, (7.2)

A(2) = ig6 V̄ 2 (1, 2, 3) V̄ 2
(

3̄, l + p3, l̄
)

V 2 (−l − p3, 3, l)

p2
1p

2
2p

2
33̂
(

p2
1

1̂
+

p2
2

2̂
+

p2
3

3̂

)(

−l̂
)(

(l+p3)
2

l̂+3̂
− l2

l̂
+

p2
1

1̂
+

p2
2

2̂

)

(l + p3)
2

. (7.3)

The contribution from translation kernels with dressed propagators can be represented as

four diagrams:

Ā1̄

Ā2̄

A3̄

A(3)

Ā1̄

Ā2̄

A3̄

A(4)
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Ā1̄

Ā2̄

A3̄

A(5)

Ā1̄

Ā2̄

A3̄

A(6)

A(3) = ig6 V̄ 2(1, 2, 3)V̄ 2(3̄, l + p3, l̄)V
2(−l − p3, 3, l)

p2
2(p

2
3)

21̂
(

p2
1

1̂
+

p2
2

2̂
+

p2
3

3̂

)

(l̂ + 3̂)
(

(l+p3)2

l̂+3̂
− l2

l̂
− p2

3

3̂

)

l2
, (7.4)

A(4) = ig6 V̄ 2(1, 2, 3)V̄ 2(3̄, l + p3, l̄)V
2(−l − p3, 3, l)

p2
2(p

2
3)

21̂
(

p2
1

1̂
+

p2
2

2̂
+

p2
3

3̂

)

(−l̂)
(

(l+p3)2

l̂+3̂
− l2

l̂
− p2

3

3̂

)

(l + p3)2
, (7.5)

A(5) = ig6 V̄ 2(1, 2, 3)V̄ 2(3̄, l + p3, l̄)V
2(−l − p3, 3, l)

p2
1(p

2
3)

22̂
(

p2
1

1̂
+

p2
2

2̂
+

p2
3

3̂

)

(l̂ + 3̂)
(

(l+p3)2

l̂+3̂
− l2

l̂
− p2

3

3̂

)

l2
, (7.6)

A(6) = ig6 V̄ 2(1, 2, 3)V̄ 2(3̄, l + p3, l̄)V
2(−l − p3, 3, l)

p2
1(p

2
3)

22̂
(

p2
1

1̂
+

p2
2

2̂
+

p2
3

3̂

)

(−l̂)
(

(l+p3)2

l̂+3̂
− l2

l̂
− p2

3

3̂

)

(l + p3)2
. (7.7)

After summing over A(1) to A(6) one finds that the factor p2
1/1̂ + p2

2/2̂ + p2
2/3̂ in the de-

nominator is cancelled and we can apply the LSZ procedure:

lim
p2
1
,p2

2
,p2

3
→0

(p2
1p

2
2p

2
3)

∫

d4l

6
∑

i=1

A(i)

= lim
p2
1
,p2

2
,p2

3
→0

ig6 1

p2
3

∫

d4l
V̄ 2(1, 2, 3)V̄ 2(3̄, l + p3, l̄)V

2(−l − p3, 3, l)

l2(l + p3)2

×

(

(l+p3)2

l̂+3̂
− l2

l̂
+

p2
1

1̂
+

p2
2

2̂
− p2

3

3̂

)(

(l+p3)2

l̂+3̂
− l2

l̂

)

(

(l+p3)2

l̂+3̂
− l2

l̂
− p2

3

3̂

)(

(l+p3)2

l̂+3̂
− l2

l̂
+

p2
1

1̂
+

p2
2

2̂

)

= lim
p2
1
,p2

2
,p2

3
→0

ig6 f(p2
1, p

2
2, p

2
3)

p2
3

= lim
p2
1
,p2

2
,p2

3
→0

ig6 ∂f(p2
1, p

2
2, p

2
3)

∂p2
3

. (7.8)

Since the integration is uniformly convergent after regularization, we can take the limit

before integration and differentiation which will give the same on-shell integral as the

light-cone calculation. So we have reproduced the light-cone computation. For the other

diagrams with dressed propagators a similar situation happens and it can be checked that

they give the same amplitudes as light-cone calculations.

From this example, we see that we should first collect the diagrams with the same

internal helicity configurations and with tadpoles on the same legs and then impose the

limit p2
1, p

2
2, p

2
3 → 0 in the LSZ procedure. Just like at the tree-level, we can also change the

order of limits. Because we should take the p2
3 at the last step after integration, we choose

the limit p2
1, p

2
2 → 0 first. Then we find that after we multiply p2

1p
2
2p

2
3 and take p2

1, p
2
2 → 0,
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the translation kernel contributions from (7.4)–(7.7) vanish and the whole contribution to

the amplitude comes from the tadpole of MHV vertices (7.2)–(7.3). The p2
1/1̂+p2

2/2̂+p2
3/3̂

simply contributes to the propagator i/p2
3 needed in the amplitude. So the result is that

we do not need to consider the translation kernel contribution in this case.

In section 5.2.1, we have argued that since the sum of one-loop diagrams in which the

external legs are dressed are proportional to tree-level amplitudes, their contributions to

higher point one-minus-helicity amplitudes vanish. But it is also instructive to apply the

above arguments to these higher point amplitudes. In fact, a similar situation occurs. For

these amplitudes there are also 1/(
∑

i p2
i /ı̂) factors both from the tadpoles of MHV vertices

and the translation kernels, where i enumerates all the external momenta. If we collect the

diagrams with the same internal helicity configuration and with tadpoles on the same legs

first, (including tadpoles of MHV vertices and translation kernels,) then the
∑

i p
2
i /ı̂ in the

denominator is cancelled and we can take the on-shell limits in any order. If we first set all

the external legs on-shell except that with the tadpole then the translation kernel contribu-

tions vanish leaving just the tadpoles of MHV vertices. So we come to the conclusion that

we do not need to consider external propagators dressed by tadpoles from translation kernel.

8 Conclusion and higher loops

We have seen that the S-matrix equivalence theorem is not immediately applicable to the

change of variables from A and Ā to B and B̄ because of the non-locality of the translation

kernels, and this accounts for the one-loop all plus helicity amplitudes apparently missing

from the CSW rules. However, by analysing the mechanisms that generate singularities

in the external momenta that are able to cancel the LSZ factors we have seen that the

types of amplitude in which S-matrix equivalence is violated are very restricted. At tree-

level the amplitudes that might have displayed this violation actually vanish. At one-loop

the equivalence violating amplitudes that do not vanish are ones in which all the gluons

have positive helicity, and these have a known form, e.g. (2.1). Because the only non-zero

one-loop amplitudes that show S-matrix equivalence violation are given by the tadpole

diagrams in which the single B̄ field of an Ā translation kernel is contracted with a B field

it follows that higher loops can only contribute to violating processes by dressing the legs

of these one-loop diagrams. So, apart from this class of known amplitudes we are free to

calculate S-matrix elements using the B and B̄ fields directly.

Since one-minus-helicity diagrams can not be constructed from more than one MHV

vertex or from completion vertices, they can only arise as tadpoles of MHV vertices. By

analysing an example we saw how the light-cone amplitudes really can be reconstructed

from tadpoles of MHV vertices.

We found a new recursion relation for the expansion coefficients Ξs of Ā, which encoded

a cancellation of certain singularities that would otherwise have contributed to further

evasion of the S-matrix equivalence theorem. Using this recursion relation for Ξ together

with the one for Υ we were led to a better understanding of the canonical transformation:

they can be reconstructed from the light-cone tree level diagrams built with only (+ +

−) vertices by replacing the propagator using (3.17). This was useful in discussing the

relationship between light-cone and MHV methods.
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A few remarks about the rational parts of one-loop diagrams is in order. The CSW or

MHV rules, although initially conjectured and proven at tree-level have been studied at one-

loop level. It has been shown that they give supersymmetric amplitudes correctly [13, 24–

26], but when applied to non-supersymmetric amplitudes, the rational parts can not be

correctly reproduced [27], not only in all-plus diagrams. Our discussion in the present

paper has focussed on the (limited) breakdown of the equivalence theorem that is respon-

sible, in our approach, for the rational one-loop all plus amplitude in non-supersymmetric

Yang-Mills. Our conclusion is that only these amplitudes require the use of the trans-

lation kernels, and so all other one-loop amplitudes can be calculated directly from the

Green functions of the B fields. One may then ask where the missing rational parts of the

other diagrams might come from. Here, we should point out that we have formulated the

transformation from light-cone Yang-Mills to the new MHV Lagrangian in D dimensions.

Consequently our canonical transformation coefficients Υ and Ξ are formulated in D di-

mensions (D = 4− 2ǫ) and the MHV vertices derived from these coefficients are also in D

dimensions, whether one uses standard dimensional regularisation as in [15] or FDH. This is

different from the usual analyses of MHV one-loop calculations in [13, 24–27] which use four

dimensional MHV vertices. In the FDH procedure the ǫ dependence enters the transfor-

mation coefficients only through
∑

Ω =
∑

p2/p̂ where p2 is the D-dimensional momentum,

rather than the four dimensional momentum, in recursion relations (3.5) and (3.9), but this

is enough to make the vertices of our Lagrangian different from the ordinary four dimen-

sional Parke-Taylor vertices. In ordinary dimensional regularisation the vertices would, in

addition, acquire indices relating to the extra dimensions. In either formalism the vertices

differ from the four dimensional ones. One would expect that, in general, these modifica-

tions would produce terms proportional to ǫ which would cancel the divergence 1/ǫ from

the loop integration resulting in rational pieces missing in the ordinary MHV calculation.

Our arguments can easily be extended to super Yang-Mills theory using the supersym-

metry transformation in [28]. We expect the supersymmety transformation is not affected

in D dimensions, and the results in [28] can be directly used here after setting the chiral

fields to zero. The A transformation is not changed. From equation (B.7) and (C.14)

in [28], Ā has an additional term which involves gluino Π:

ĀBΠ
q = − 1√

2q̂

∞
∑

n=2

∫

1···n

n
∑

s=1

[

Ξs
q,1̄···n̄

n
∑

l=1,l 6=s

(−1)δlsB1 · · ·Πl · · · Π̄s · · · Bn

]

δq1̄···n̄ , (8.1)

Ξs is just the coefficient appearing in the pure bosonic expansion. The fermion propagator

and bosonic propagators are

〈ΠΠ̄〉 =
i g2p̂√
2 p2

, 〈AĀ〉 =
i g2

2p2
. (8.2)

Considering the
√

2p̂ factor, when connected to a gluino propagator the coefficient is the

same as the one in the pure bosonic expansion up to a sign. So all the foregoing discussion

can be applied to diagrams with inner gluinos. Therefore one would expect that only

the tadpole would evade the equivalence theorem. One can easily check that the all-plus
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Figure 1. Translation kernels diverge in symmetrical graphs.

translation kernel contribution to the amplitude is cancelled using above expansion (8.1).

We also expect that our MHV calculation should reproduce the light-cone super Yang-Mills

calculation, so the one-minus-helicity amplitude in supersymmetric Yang-Mills should also

be zero. As is well known [21], in supersymmetric theories the rational parts of amplitudes

are determined uniquely by their (four dimensional) cut-constructible parts. It follows that

all the remaining rational parts discussed in the previous paragraph should be cancelled in

the supersymmetric theory.
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A Some remaining thoughts on translation kernels

The careful reader may have noticed that the translation kernel can become ill-defined

due to the symmetry of graphs. For instance in the tadpole graph (figure 1) arising from

self-contraction of the Ξ2B̄BB term the gluons flowing in and out of the kernel must carry

equal and opposite momenta as required by conservation of momentum. As a result the

factors (p2
j + iǫ)/p̂j which appear in the denominator of the kernel cancel in pairs. The

same cancellation can also occur for special values of momentum. Note that in this case

the standard iǫ prescription fails to prevent
∑

(p2
j + iǫ)/p̂j from vanishing.

This problem can be fixed by adding a small correction to the definition of translation

kernels. To break symmetry we distinguish the iǫ associated with A fields and B fields.

Υ(123) is now modified as

Υ(123) =
i
(

p̄2

p̂2
− p̄3

p̂3

)

p2
1
+iǫA

p̂1
+

p2
2
+iǫB

p̂2
+

p2
3
+iǫB

p̂3

(A.1)

Higher order terms in the A field expansion can all be redefined following the same

spirit and the coefficients for the Ā expansion are in turn determined from the canonical

transformation condition (3.8). However a small price is to be paid for getting around the

divergences. By substituting the modified kernels back into (1.7) which used to define Υ
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Figure 2. Infinitesimal vertex terms.

we find two sides of the equation slightly mismatch. The differences generate new vertices

carrying infinitesimal corrections.

p2 + iǫA

p̂
A(p) + i

∫

dD−1q

[

q̄

q̂
A(q), A(p − q)

]

(A.2)

=

∫

dD−1q
q2 + iǫA

q̂
B(q)

δA(p)

δB(q)

+

∞
∑

n=2

∫

(

n
∏

i=2

dD−1q(i)

)





n
∑

j=2

i (ǫA − ǫB)

q̂j



Υ12...nB(q2) . . . B(qn) (A.3)

=

∫

dD−1q
q2 + iǫA

q̂
B(q)

δA(p)

δB(q)
+

i (ǫA − ǫB)

q̂
B(q)

δA(p)

δB(q)
− i (ǫA − ǫB)

p̂
B(p) (A.4)

Equivalently this can be written as

L−+[A, Ā] + L−++[A, Ā] = L−+[B, B̄] + Lǫ[B, B̄] (A.5)

where Lǫ represents the new vertex terms.

Lǫ[B, B̄] = −Āi (ǫA − ǫB)B + B̄ (ǫA − ǫB)B

=

( ∞
∑

m=2

m
∑

s=2

∫

2...m

ŝ

p̂
Ξs−1B . . . B̄ . . .B

)

i (ǫA − ǫB)B (A.6)

Introducing double circles to denote the factor ŝ
p̂ i (ǫA − ǫB), these terms are expressed

graphically as in figure 2.

In most cases these corrections do not really enter into our calculations because of the

infinitesimal nature of the vertices, except for extremely divergent graphs such as (figure 1).

Because of the asymmetry treatment the factor
∑

(p2
j + iǫ)/p̂j in the denominator of the

kernel do not cancel completely. A factor of i(ǫA − ǫB)/p̂ in the translation kernel is left

to cancel the infinitesimal factor brought by the new vertex, resulting a finite contribution
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Figure 3. Contributions to the
〈

ĀĀ
〉

symmetric loop graph.

+

−
−
+

−− ++Ā Ā

Figure 4. 〈ĀĀ〉 self-energy graph in the LCYM theory.

to the loop integral. It is straightforward to show the following four graphs (figure 3(a) to

figure 3(d)) constructed from the new vertex restore the 〈ĀĀ〉 self-energy bubble integral

in the LCYM theory (figure 4(a)).

Another issue regarding iǫ prescription arises if we wish to apply (3.12) to simplify Ā
expansions. In the example illustrated below (figure 5) the first two graphs are combined

according to the identity (A.7).

1
p2
3
+iǫB

p̂3
+

p2
4
+iǫA

p̂4
+ (p1+p2)2+iǫB

p̂1+p̂2

− 1
p2
1
+iǫB

p̂1
+

p2
2
+iǫB

p̂2
+

p2
3
+iǫB

p̂3
+

p2
4
+iǫA

p̂4

=
1

p2
3
+iǫB

p̂3
+

p2
4
+iǫA

p̂4
+ (p1+p2)2+iǫB

p̂1+p̂2

p2
1
+iǫB

p̂1
+

p2
2
+iǫB

p̂2
+ (p3+p4)2+iǫB

p̂3+p̂4

p2
1
+iǫB

p̂1
+

p2
2
+iǫB

p̂2
+

p2
3
+iǫB

p̂3
+

p2
4
+iǫA

p̂4

(A.7)

However we see in (A.7) the numerator generated from subtraction has a dif-

ferent iǫ associated with line (p3 + p4) and does not exactly cancel the factor

1/
(

p2
1
+iǫB

p̂1
+

p2
2
+iǫB

p̂2
+ (p3+p4)2+iǫA

p̂3+p̂4

)

represented by the small dash line circle on the left.
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Figure 5. Simplification of the Ā expansion.

Ā, 1
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B̄, 4

Figure 6. Correction term to the Ā expansion.

The difference can be accounted for if we introduce even more correction graphs carrying

infinitesimal vertices.

i(ǫA − ǫB)

p̂3 + p̂4

1
p2
3
+iǫB

p̂3
+

p2
4
+iǫA

p̂4
+ (p1+p2)2+iǫB

p̂1+p̂2

× 1
p2
1
+iǫB

p̂1
+

p2
2
+iǫB

p̂2
+ (p3+p4)2+iǫA

p̂3+p̂4

1
p2
1
+iǫB

p̂1
+

p2
2
+iǫB

p̂2
+

p2
3
+iǫB

p̂3
+

p2
4
+iǫA

p̂4

(A.8)

Again these corrections can generally be neglected except for symmetrical tadpoles

such as the graph constructed by contracting leg p3 and p4.

Another way to deal with this problem without bothering with the iǫ is to change the

orders of the LSZ procedure and the overall delta function. Let us look at diagrams:

p1

p4

p3

p2

p1

p4

p3

p2

We can impose δ(p̂1 + p̂2) and the momentum conservation on the right vertex, then apply

LSZ procedure and impose the δ(p̄1 + p̄2)δ(p̃1 + p̃2) at last. In the LSZ procedure we impose
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p2
2 → 0 first. The first diagram is proportional to

lim
p2
1
→0

lim
p2
2
→0

p2
1p

2
2

∫

3

3̂

1̂(Ω1 + Ω2)

[

(ζ̄3 − ζ̄1)(ζ̄23 − ζ̄2)

−Ω2
23 + Ω2 + Ω3

]

1

p2
3

1

p2
2

(A.9)

= lim
p2
1
→0

lim
p2
2
→0

4p2
1p

2
2

∫

3

3̂

1̂
(

p2
1

1̂
+

p2
2

2̂

)





(ζ̄3 − ζ̄1)(ζ̄23 − ζ̄2)

−P 2
23

P̂23

+
p2
2

2̂
+

p2
3

3̂





1

p2
3p

2
2

(A.10)

= 4

∫

3

3̂

p2
3





(ζ̄3 − ζ̄1)(ζ̄23 − ζ̄2)

−P 2
23

P̂23

+
p2
3

3̂



 (A.11)

= 2





∫

3

3̂

p2
3





(ζ̄3 − ζ̄1)(ζ̄23 − ζ̄2)

−P 2
23

P̂23

+
p2
3

3̂



−
∫

3

P̂23

P 2
23





(ζ̄3 − ζ̄2)(ζ̄23 − ζ̄1)

−P 2
23

P̂23

+
p2
3

3̂







 (A.12)

= −2

∫

3

3̂(2̂ + 3̂)

p2
3P

2
23

(ζ̄3 − ζ̄1)(ζ̄23 − ζ̄2) (A.13)

+
P̂23

P 2
23

(

− P 2
23

P̂23

+
p2
3

3̂

)

[

(ζ̄3 − ζ̄1)(ζ̄23 − ζ̄2) − (ζ̄3 − ζ̄2)(ζ̄23 − ζ̄1)
]

(A.14)

= −2

∫

3

V̄ 2(4, 1, 23)V̄ 2(41, 2, 3)

p2
3P

2
23

, (A.15)

where ζ̄ij = P̄ij/P̂ij . This recovers the light-cone integral. From (A.9) to (A.10) we impose

δ(p̂1 + p̂2) and the momentum conservation on the right vertex. From (A.10) to (A.11)

we apply the LSZ procedure. The would-be singularity of 1/(p2
1/1̂ + p2

2/2̂) is cancelled

by the p2
1 factor from LSZ. From (A.11) to (A.12) we split the integrand into two parts

and change the integration variable to one part. (A.12) to (A.14) is simply algebra and

from (A.14) to (A.15) we impose the last delta functions. The second diagram can be

worked out similarly. In fact, this integral is zero after integration as required by helicity

conservation. So these kind of diagrams do not contribute to the amplitude.

B Proof of recursion relation ( 3.9)

We start with the old recursion relation in momentum space:

1̄ ı̄n−1

2̄

n̄

..

..
= − ∑

1≤l≤n−2
1̄

..

..
ı̄l

..

..
.

(B.1)

It is easy to see that for n = 3

1̄

2̄

3̄

2 = − 2̄1̄

3̄

2 = ,
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1̄

2̄

3̄

2 = − 3̄1̄

2̄

2 = .

For n = 4, Ξ1(1̄2̄3̄4̄):

1̄ 3̄3

2̄

4̄

= −
[

2 2 + 3

]

(B.2)

= −
[

2 2 −
[

2 +
2

]

]

(B.3)

=−
[

− 2 2 −
2

]

(B.4)

= 2 +
2

.

(B.5)

Equation (B.2) is just the old recursion relation. From (B.2) to (B.3) we expand the second

term. From (B.3) to (B.4) we combine the first two terms using (3.11). Then the recursion

relation for Ξ1(1̄2̄3̄4̄) is proven. Similarly, one can also prove that Ξ2(1̄2̄3̄4̄), Ξ3(1̄2̄3̄4̄)

satisfy the recursion relation.

For Ξs with general n arguments, we suppose that for Ξs with less than n arguments

the recursion relation is already proven. Then at the first step we combine the following

terms from the old recursion relation

−
[

1̄

...

...
n−2 ı̄

i−1

2 + 1̄

...

...
n−2 ı̄

i+1

2 + 1̄

...

...
n−1

]

.

(B.6)

By expanding the third term using recursion for Υ and combining terms, using the rela-
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tion (3.11), we obtain

1̄

...

...
n−2 ı̄

i−1

2 + 1̄

...

...
n−2 ı̄

i+1

2
+
∑

m≥2 1̄

...

...
ı̄

...m

+
∑

m≥2 1̄

...

...

ı̄
...m

(B.7)

The first two terms come from the first two terms in (B.6) combined with two terms from

the expansion of the last terms in (B.6). The two sums are what is left from the expansion

of the last term in (B.6).

For step l − 1, 3 ≤ l ≤ n − 3, we combine terms

−
[

∑

1̄

...

...
n−l ı̄

...

...
l −∑ 1̄

...

...
ı̄

...

...
l−1 − ∑

m≥2
1̄

...

...

...l−m

· · ·
m

− ∑

m≥2

1̄

...

...

...l−m

· · ·
m

]

(B.8)

where the first term is from the old recursion relation, the second term and the m = 2

terms in the last two sums come from step l − 2 and the other terms in the sums come

from step l −m. After expanding the grey blob in the first term and the black blob in the

second terms, collecting terms using the relation (3.11) and counting in the other terms

left from step l − m, we obtain

∑

1̄

...

...
ı̄

...

...
l +

∑

m≥1

∑

r≥m+1

[

1̄

...

...

...l−m

· · ·
r

+

1̄

...

...

...l−m

· · ·
r

]

.

(B.9)

Iterate this procedure from (B.8), and at the last step l = n−2, one can find the result (B.9)

is just the right hand side of the recursion relation to be proved.
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